Remember

- Ensure to use a 2% incline on the treadmill for the parameter check and the ramp test
- Ensure that the cyclist maintains a cadence of 80-100RPM throughout the test and don't allow them to drop under 70RPM at the highest wattages

Step 1 – Find Base Speed/Wattage

- Have customer determine what speed or wattage results in a HR between 100-110bpm
- This will be their base speed/wattage

Step 2 – Find Speed/Wattage at 6/10 RPE

- By increasing the speed or wattage, ask your client to identify a 6/10 effort on RPE scale if they held this effort for 5 minutes
- You will not use this speed/wattage in your calculations but is important as it will make the next step more accurate

Step 3 – Find Peak Speed/Wattage

- By increasing the speed or wattage, ask your client to identify a 9/10 effort on RPE scale if they held this effort for 2 minutes
- This will be their predicted peak speed/wattage
<table>
<thead>
<tr>
<th>RPE Scale (Rate of Perceived Exertion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2-3</td>
</tr>
<tr>
<td>4-5</td>
</tr>
<tr>
<td>6-7</td>
</tr>
<tr>
<td>8-9</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
1. Take the predicted peak speed/wattage and minus the base speed/wattage
2. Divide this number by 9 (will give you a 9-12 minute test every time)

\[
\frac{\text{predicted peak speed/wattage} - \text{base speed/wattage}}{9}
\]

Example using wattage (bike, rower, Assault bike etc.)

Base wattage = 100W Predicted top wattage = 320W

\[
\frac{320 - 100}{9} = \frac{210}{9} = 23.3W = 25W \text{ increments}
\]

The warm up will be completed at base wattage – one increment
100-25W = 75W

Recovery will be inactive
PARAMETER CALCULATIONS
SPEED EXAMPLE

1. Take the predicted peak speed/wattage and minus the base speed/wattage
2. Divide this number by 9 (will give you a 9-12 minute test every time)

\[(\text{predicted peak speed/wattage} - \text{base speed/wattage})/9\]

Example using speed (treadmill) with a base speed of 6.2kph and a predicted peak wattage of 12.2kph

Base speed = 6.2kph – Predicted top speed = 12.2kph
\[(12.2-6.2)/9 = 6.0/9 = 0.67 = 0.7kph \text{ increments}\]

The warm up will be completed at base speed – one increment
6.2 - 0.7kph = 5.5kph

Recovery will be inactive